Traveling Wave Solutions in Coupled Chua’s Circuits, Part I: Periodic Solutions∗

نویسندگان

  • Shui-Nee Chow
  • Ming Jiang
  • Xiaobiao Lin
  • X. Lin
چکیده

We study a singularly perturbed system of partial differential equations that models a one-dimensional array of coupled Chua’s circuits. The PDE system is a natural generalization to the FitzHugh-Nagumo equation. In part I of the paper, we show that similar to the FitzHugh-Nagumo equation, the system has periodic traveling wave solutions formed alternatively by fast and slow flows. First, asymptotic method is used on the singular limit of the fast/slow systems to construct a formal periodic solution. Then, dynamical systems method is used to obtain an exact solution near the formal periodic soluion. In part II, we show that the system can have more complicated periodic and chaotic traveling wave solutions that do not exist in the FitzHugh-Nagumos equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulses, Fronts and Chaotic Wave Trains in a One-dimensional Chua’s Lattice

We show how wave motions propagate in a nonequilibrium discrete medium modeled by a onedimensional array of diffusively coupled Chua’s circuits. The problem of the existence of the stationary wave solutions is reduced to the analysis of bounded trajectories of a fourth-order system of nonlinear ODEs. Then, we study the homoclinic and heteroclinic bifurcations of the ODEs system. The lattice can...

متن کامل

Modified F-Expansion Method Applied to Coupled System of Equation

A modified F-expansion method to find the exact traveling wave solutions of  two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Periodic traveling wave solutions for a coupled map lattice

A type of coupled map lattice (CML) is considered in this paper. What we want to do is to define the form of a traveling wave solution and to reveal its existence. Due to the infinite property of the problem, we have tried the periodic case, which can be dealt with on a finite set. The main approach for our study is the implicit existence theorem. The results indicate that if the parameters of ...

متن کامل

The extended homogeneous balance method and exact solutions of the Maccari system

The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013